Posts

Vision is essential for quality laser marking

Cyan Tec Systems, an expert laser marking systems integrator, has extensive experience of integrating laser marking with vision systems to combine automatic code verification and position compensation, to achieve the quality required for industries like automotive and aerospace manufacturing.

A revolution in digital imaging technology has enabled camera sensor resolution and sensitivity in low light to increase dramatically in recent years. Cameras which are smaller and more efficient can be integrated where space is limited and are capable of operating in harsh environments.

In 21st century manufacturing, there is a need to verify correct completion of a process to ensure parts match specification at all stages in the process. Laser marking is a commonly-used technique to write information in text or machine readable code (bar codes and 2D matrix marks) to identify components providing traceability and quality assurance. Immediately after a mark is completed, a vision system grabs the image of the mark under controlled lighting conditions and automatically reads the code to ensure that the contrast and integrity of the code matches the one that is stored in the customer’s master production database.

Given the resolution of modern cameras, the vision system can also be used for compensation of position or orientation, reducing the need for expensive tooling. A component can be placed within the field of view and the software automatically recognise the object (which might be one of a family of different components) and check the angular and positional misalignment before compensating by accurately shifting the laser marking file to match the actual component position.

 

Finally, another use for vision is the dimensional verification of laser processes like drilling, where the whole area can be calculated to ensure that the parameters are within the quality tolerance bands specified. Data can be recorded and logged to allow categorisation and process verification with the option of actively adjusting for errors during the production run or raising an alarm or warning to suspend production until fault conditions are rectified.

Modern laser marking systems are fast, accurate and repeatable with high reliability and minimum maintenance. Cyan Tec Systems has experience of integrating laser marking, engraving, etching or ablation systems using lasers from all the major suppliers and can offer expert advice on the most appropriate solution for laser processing, paint spraying, assembly, test, and many other applications. Standard and bespoke systems are offered with a full service from design through manufacture, a large installed base worldwide is supported by a dedicated team of engineers.

Laser Cutting: Product Focus

Laser cutting of a variety of different materials, particularly metals and fabrics, is fairly common nowadays. Therefore, when an automotive supplier contacted Cyan Tec Systems Limited to design and manufacture an automated piece of equipment to remove excess material from their complex 3D formed products, the perfect solution was developed and in turn the RRTS14CC standard laser cutting cell was established.

cyan-tec-laser-head-005

Cyan-Tec: Laser Cutting

One of our laser source suppliers describe laser cutting as “a process where a material is cut, and this can be for small & fine materials or materials with a much greater level of thickness”.

They continue by stating “laser cutting has a number of application areas, particularly in industrial manufacturing where a higher output is required but is also used in schools, aerospace and in small businesses”.

The integration of a rotary transfer system, a six axis robot and fixed laser optics ensured that the customer is not only satisfied with the much-improved cycle time that the cell can offer but also the quality of the laser cut that the Co2 laser can achieve is exceptional.

In order to achieve the aforementioned high-quality laser cuts, the six axis robot is designed to follow pre-programmed paths, thus presenting each of the different variants to the laser head at the correct focal distance.

The laser source that is integrated as part of the RRTS14CC cell is generated from carbon dioxide and the integration of a series of mirrors means that the beam alignment from source to nozzle is both accurate and repeatable to suit the customer’s application. Though the RRTS14CC is a standard cell, the optics (tubes, mirrors etc.) will be specifically designed application by application to guarantee that the laser head arrangement is perfectly suited to the material that is being processed.

For more information on the RRTS14CC cell please visit its dedicated page here: http://cyan-tec.com/single-robot-laser-cutting-machine

Robot Laser Welding Cell is Flexible & Fast

To address the needs of the white goods and automotive industries in particular, expert system builder Cyan Tec Systems of Loughborough has developed a standard multi-axis robotic laser welding cell incorporating a 6-axis robot combined with a 2-axis tilt-and-turn manipulator to give the ultimate flexibility with 8 programmable axes. Such a system can work on large components or assemblies and present them in such a way to reduce the complexity of the robot moves and compress the overall cycle time.

More and more welding tasks are becoming automated as the lack of availability of skilled and experienced manual welders, and the requirements to achieve stringent and repeatable quality and higher throughput, drive production away from conventional joining processes towards laser welding.  In addition to this, the current trend in reshoring production from abroad promotes a high degree of automation which minimises the impact of international differences in labour rates, and reduces the cost and uncertainty associated with long distance logistics via sea or air freight.

The Hyperion MAR30WF is a standard system built by Cyan Tec using a 6-axis robot carrying a compact laser welding head from a multi-kW fibre laser source. The tilt and turn manipulator has an integral indexing system allowing parts to be safely unloaded and re-loaded during the welding cycle by an operator outside the Class 1 safety enclosure. Welding by laser is a non-contact process, where the laser beam is typically some distance from the final focusing optic. For best results a pipe delivers Argon assist gas which prevents oxidisation, leaving a bright and oxide-free weld which is capable of coating or painting after welding without any need for post-weld cleaning.

standard-multi-axis-robot-laser-image

Image: Standard Multi-axis robot laser welding cell

A highly efficient laser welding cell can be modified to process new products by simply re-programming the software and re-tooling for new configurations. Using a dedicated cell with a standard design gives the benefit of reduced cost and lead time for the capital equipment, as custom machinery is limited to the final tooling and the welding path programme.

Laser welding has the benefits of low heat input and excellent repeatability.  The accuracy and consistency reduces the amount of material required in flanges and enables novel joint arrangements since only single-sided access is required (unlike resistance spot welding).

Modern robots are faster, with higher accuracy and repeatability than previous generations. Cyan Tec has experience of integrating robots and lasers from all the major suppliers and can offer expert advice on the most appropriate solution for laser processing, paint spraying, assembly, test as well as many other applications. Standard and bespoke systems are offered with a full service from design through manufacture, a large installed base worldwide is supported by a dedicated team of engineers.